Homotopy Groups of Finite / / - Spaces
نویسندگان
چکیده
In this announcement we present results about the homotopy groups of //-spaces having the homotopy type of finite CW-complexes. We call such spaces finite H-spaces. We always assume our spaces are connected. In the sequel we always use X to denote a finite //-space. In some statements we refer to a direct sum of cyclic groups. We do not rule out the case that the sum is zero. Let X be the fibre of the canonical map X KiTl^X), 1). It is well known that this "universal covering space" X is a finite //-space.
منابع مشابه
Elliptic spaces with the rational homotopy type of spheres
The Milnor-Moore theorem shows that the Q-elliptic spaces are precisely those spaces which have the rational homotopy type of finite, 1-connected CW complexes and have finite total rational homotopy rank. This class of spaces is important because of the dichotomy theorem (the subject of the book [8]) which states that a finite, 1-connected complex either has finite total rational homotopy rank ...
متن کاملRational Homotopy Groups of Generalised Symmetric Spaces
We obtain explicit formulas for the rational homotopy groups of generalised symmetric spaces, i.e., the homogeneous spaces for which the isotropy subgroup appears as the fixed point group of some finite order automorphism of the group. In particular, this gives explicit formulas for the rational homotopy groups of all classical compact symmetric spaces.
متن کاملCellularization of Classifying Spaces and Fusion Properties of Finite Groups
One way to understand the mod p homotopy theory of classifying spaces of finite groups is to compute their BZ/p-cellularization. In the easiest cases this is a classifying space of a finite group (always a finite p-group). If not, we show that it has infinitely many non-trivial homotopy groups. Moreover they are either p-torsion free or else infinitely many of them contain p-torsion. By means o...
متن کاملTame Homotopy Theory
space is said to be rational if its homotopy groups are rational vector spaces. Quillen has shown that up to homotopy there is a one-one correspondence between rational spaces and differential graded Lie algebras over 0. Call a two-connected space tame if the divisibility of its homotopy groups increases with dimension just quickly enough to prevent stable k-invariants from appearing. We will s...
متن کاملA Torus Theorem for Homotopy Nilpotent Groups
Nilpotency for discrete groups can be defined in terms of central extensions. In this paper, the analogous definition for spaces is stated in terms of principal fibrations having infinite loop spaces as fibers, yielding a new invariant we compare with classical cocategory, but also with the more recent notion of homotopy nilpotency introduced by Biedermann and Dwyer. This allows us to character...
متن کامل